
Sensor Bus: An Intermediary Layer for Linking
Geosensors and the Sensor Web

Arne Broering
International Institute for

Geo-Information Science and
Earth Observation (ITC)

University of Twente
Enschede, Netherlands

broering@52north.org

Theodor Foerster
Institute for Geoinformatics

(IfGI)
University of Münster

Münster, Germany
theodor.foerster@uni-

muenster.de

Simon Jirka
52◦North

Initiative for Geospatial Open
Source Software

Münster, Germany
jirka@52north.org

Carsten Priess
Institute for Geoinformatics

University of Münster
Münster, Germany

carsten.priess@uni-
muenster.de

ABSTRACT
In recent years, the standards of OGC’s Sensor Web En-
ablement (SWE) initiative have been applied in a multi-
tude of projects to encapsulate heterogeneous geosensors for
web-based discovery, tasking and access. Currently, SWE
services and the different types of geosensors are integrated
manually due to a conceptual gap between these two layers.
Pair-wise adapters are created to connect an implementa-
tion of a particular SWE service with a particular type of
geosensor. This approach is contrary to the aim of reaching
interoperability and leads to an extensive integration effort
in large scale systems with various types of geosensors and
various SWE service implementations.

To overcome this gap between geosensor networks and the
Sensor Web, this work presents an intermediary layer for
integrating these two distinct layers seamlessly. This inter-
mediary layer is called the Sensor Bus as it is based on the
message bus architecture pattern. It reduces the effort of
connecting a sensor with the SWE services, since only the
adaption to the Sensor Bus has to be created. The com-
munication infrastructure which acts as the basis for the
Sensor Bus is exchangeable. In this work, the Sensor Bus
is based on Twitter. The involved SWE services as well as
connected geosensors are represented as user profiles of the
Twitter platform.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications; D.2 [Software Engineering]: Software

Architectures

Keywords
Sensor Web, geosensor networks, SWE, Twitter

1. INTRODUCTION
Nowadays, sensors become smaller, cheaper, more reliable,
more power efficient and more intelligent. Geosensors, as
kinds of sensors delivering an observation with georeferenced
location [33], are increasingly used in various applications
ranging from environmental monitoring, precision agricul-
ture to early warning systems [29]. The sensors utilized in
these applications may be stationary or mobile, either on
land, water or in the air and could gather data in an in-situ
or remote manner. Due to this variety, a coherent infras-
tructure has become necessary to integrate heterogeneous
sensors in a platform independent and uniform way. The
Sensor Web is such an infrastructure for sharing, finding
and accessing sensors and their data across different appli-
cations [25]. The Sensor Web is to sensors what the World
Wide Web (WWW) is to general information sources - an
infrastructure allowing users to easily share their sensor re-
sources. It hides the underlying layers with the network
communication details, and heterogeneous sensor hardware,
from the applications built on top of it.

The Sensor Web Enablement (SWE) [5] initiative of the
Open Geospatial Consortium (OGC)1 standardizes Web Ser-
vice interfaces and data encodings for the Sensor Web. In
recent years, these SWE standards have demonstrated their
practicability and suitability in various projects (e.g., [10,
27, 19, 34]) and applications (e.g., [15, 1, 8, 14]). How-
ever, due to the missing interoperability between the two
layers (geosensor network and Sensor Web), it is currently
not possible to dynamically install geosensors on-the-fly with
a minimum of human configuration effort, to enable a plug
& play of geosensors.

1http://www.opengeospatial.org

http://www.opengeospatial.org


Dynamically installing geosensors on the Sensor Web in a
plug & play manner requires advanced concepts. Gener-
ally, the SWE standards focus on interacting with the upper
application level. They are designed from an application-
oriented perspective. As a result, the interaction between
the Sensor Web and the underlying geosensor network layer
has not been sufficiently described yet. The Sensor Web is
based on the WWW and its related protocols. On the other
hand, sensor network technologies are based on lower-level
protocols such as Bluetooth2, ZigBee3, the IEEE 1451 stan-
dards family [21] or proprietary protocols. From an appli-
cation perspective, the SWE services encapsulate the sensor
network and hide these lower-level protocols. Currently, the
Sensor Web and geosensor network layer are integrated by
manually building proprietary bridges for each pair of Web
Service implementation and sensor type. This approach is
cumbersome and leads to extensive adaption effort. Since
the price of sensor devices is decreasing rapidly, the man-
ual integration becomes the key cost factor in developing
large-scale sensor network systems [3]. Concepts are miss-
ing which facilitate the connection of the two layers.

After giving an overview of the SWE standards (Section 2)
and related work (Section 3), the concept of an intermediary
layer between Sensor Web and geosensor network layer, the
Sensor Bus, is described (Section 4). In a next step (Section
5) the Sensor Bus is implemented by the example of Twitter
followed by an analysis of this implementation (Section 6).
The paper ends with a conclusion and discussion of future
work.

2. SENSOR WEB ENABLEMENT
The OGC is an industry consortium comprising over 380
members defining interoperable services for the Geospatial
Web. The SWE initiative [5] as part of OGC’s specifica-
tion program develops standards to integrate sensors into
the Geospatial Web. In particular, SWE incorporates data
models for describing sensors (SensorML [4]) as well as gath-
ered sensor data (Observations & Measurements [11]). The
main Web Service interfaces are the Sensor Observation Ser-
vice (SOS), the Sensor Alert Service (SAS), and the Sensor
Planning Service (SPS). The SWE standards framework can
be used to set up a Sensor Web.

The SOS [24] is designed for accessing real time as well as
historic sensor data, and sensor metadata. Its operations
allow users to request sensor data based on spatial, tem-
poral and thematic filter criteria. Additionally, the SOS
offers operations for inserting observations and sensors. Re-
quested sensor data are encoded conforming to the Obser-
vations & Measurements standard and the sensor metadata
are returned as SensorML documents. A complementary
approach for accessing sensor data is offered by the SAS
[31]. While the SOS follows the pull-based communication
paradigm, the SAS is capable of pushing sensor data to sub-
scribers. Subscribers of the SAS define particular alert con-
ditions to specify the situations they are interested in and
want to receive data accordingly (e.g., when sensor x mea-
sures temperature over 30◦ C). To control and task sensors
the SPS [32] can be used. A common application of SPS

2http://www.bluetooth.org
3http://www.zigbee.org

is to define simple sensor parameters such as the sampling
rate but also to define more complex tasks such as mission
planning of satellite systems. Further on, the SPS offers a
broad range of operations for managing submitted sensor
tasks (e.g., deleting, updating and canceling tasks).

Also, service interfaces for the resource discovery within the
Sensor Web have been developed and added to the SWE
framework. The Sensor Instance Registry (SIR) and the
Sensor Observable Registry (SOR) [20] enable searching for
sensors, sensor datasets, or SWE services.

3. RELATED WORK
GeoSWIFT [22] is a three-layered architecture for distributed
geospatial information infrastructures to realize the Sensor
Web. It advocates the usage of OGC standards to expose
sensors and sensor data. Additionally to a standardized Web
Service interface for sensor data access, a server component
is introduced which integrates and fuses heterogeneous sens-
ing sources. However, the design of the integrator compo-
nent is not described.

Sgroi et al. [28] developed a set of service interfaces usable
as an application programming interface for sensor networks.
Similar to the SWE framework of services, the approach fol-
lows a top down view on sensor networks independent of
a particular implementation or hardware platform. Besides
an essential query/command service, auxiliary services such
as locationing, timing, and a concept repository are defined.
By offering this functionality the approach focuses on the
needs of wireless sensor networks. The SWE framework
instead, focuses on serving general functionalities needed
by geosensor network applications and is not specialized on
wireless sensor networks.

The SOCRADES architecture [12] is designed to couple the
Internet of Things infrastructure with a Service Oriented
Architecture. The architecture comprises multiple services
providing middleware functionality such as device managing,
eventing or service discovery. The integration of sensors into
the infrastructure is done by implementing sensor gateways
which hide the communication protocol and expose the sen-
sor functionality as device level Web Services. In contrast
to the SWE framework, the operations of individual services
are not standardized.

Emerging Sensor Web portals provide central web platforms
where people can upload and share sensor data. These por-
tals offer different kinds of visualizations on registered sen-
sors and collected data. Examples for such systems are Sen-
sorMap and the underlying SenseWeb infrastructure [26],
SensorBase [9] as well as Sensorpedia4. Besides mechanisms
for integration and registration of sensors and the upload of
sensor data, also the discovery of sensors is supported. How-
ever, the centralized approach of these platforms differs from
the decentralized approach of SWE. Also, the approaches do
not comprise interfaces for tasking sensors which is in scope
of this work.

The Sensor Web Agent Platform (SWAP) [23] combines the
paradigms of Web Services and Multi Agent Systems. By

4http://www.sensorpedia.org

http://www.bluetooth.org
http://www.zigbee.org
http://www.sensorpedia.org


building on OGC’s SWE framework, the proposed architec-
ture shall improve the integration of arbitrary sensors into
workflows on the application level. This is done by intro-
ducing a three tier architecture comprising sensor, knowl-
edge and application layer. Different kinds of agents residing
on the three layers provide certain functionality and facili-
tate the development of new applications. While this work
facilitates the integration of sensors with applications, the
integration of sensors with the Sensor Web is out of scope.

Also an agent based system is IrisNet [17]. It uses organiz-
ing agents to store sensor data in a hierarchical, distributed
database and sensing agents which collect the sensor data.
The authors envision a worldwide Sensor Web by focusing
on data collection and query answering. The architecture
lacks particular mechanisms for an easy integration of new
sensors.

Similar to the goal of this work, the Global Sensor Net-
work middleware [2] focuses on a flexible integration of sen-
sor networks to enable fast deployment and addition of new
sensors. Its central concept is the virtual sensor abstrac-
tion with XML-based deployment descriptors in combina-
tion with data access through plain SQL queries. GSN pro-
vides distributed querying, filtering, and combination of sen-
sor data as well as the dynamic adaption of a system during
runtime. However, service interfaces for tasking and con-
trolling sensors are not provided to the application layer.

Similar to the GSN approach is Hourglass [30], which pro-
vides an architecture for connecting sensors to applications.
It offers discovery and dataprocessing services and tries to
hide internals of sensors from the user. It focuses on main-
taining the quality of service of data streams.

None of the existing solutions address the seamless integra-
tion of sensors with standardized Web Service interfaces as
defined by OGC. Aim of this work is to leverage SWE tech-
nology and its benefits by facilitating the integration of new
sensors into the Sensor Web. Another unique characteristic
of the approach presented here is the possibility to adapt the
concepts to different communication infrastructures acting
as base technology (e.g., XMPP or JMS). So in future, it
might be considered to use existing systems as the basis of
the proposed Sensor Bus and reuse their functionality.

4. THE SENSOR BUS ARCHITECTURE
In the following, the concept and architecture of the Sensor
Bus, an intermediary layer integrating geosensor networks
and the Sensor Web, are described. The architecture can
be adapted to different communication infrastructures - an
implementation based on Twitter is presented in Section 5.

Fig. 1 depicts an overview of the components involved in
the Sensor Bus architecture. A client located on the appli-
cation layer invokes a SWE service for a specific functionality
such as the retrieval of sensor observations or the submis-
sion of a sensor task. The Sensor Bus maintains associations
to these services as well as associations to sensor gateways
which supply access to connected sensors. The sensor gate-
way establishes the communication between its associated
sensors and the upper layer. From a hardware perspective,
sensor gateway and sensor may merge in certain scenarios to

a single component (e.g., a weather station which comprises
multiple sensors and is equipped with an advanced comput-
ing unit acting as the gateway to the associated sensors).
Also, it is possible that the gateway gives access to a whole
sensor network by acting as a sink node.

Figure 1: Sensor infrastructure stack

We propose that the intermediary layer is externally de-
signed as a logical bus - the Sensor Bus (see Fig. 2). Aligned
with the Message Bus pattern [18], the Sensor Bus incorpo-
rates (1) a common communication infrastructure, a shared
set of (2) adapter interfaces, and a well-defined (3) message
protocol.

The common communication infrastructure (1) is established
through a publish/subscribe mechanism [16] based on the
underlying messaging technology (e.g., Twitter or XMPP).
Services as well as sensors can publish messages to the bus
and are also able to subscribe to the bus for receiving mes-
sages in a push-based communication style. The underlying
messaging technology takes care of forwarding the posted
messages to the specific subscribed components. The differ-
ent components (i.e., sensors and SWE services) can sub-
scribe and publish through interfaces (2). For these inter-
faces, pluggable adapters can be developed by sensor ven-
dors or service providers. The adapters convert the service
or sensor specific communication protocol to the internal bus
protocol (3).

Other than physical buses, used for example in computer
hardware, the Sensor Bus is a logical bus and reflects a
bus topology to external components (sensors and services).
While there is no single instance representing the Sensor
Bus, the adapters of those components, together with the
underlying messaging technology, form the Sensor Bus.



Figure 2: Structure of the Sensor Bus

The interfaces which are used to realize the Sensor Bus are
depicted in Fig. 3. The SensorAdapter (e.g., an adapter for
the SunSPOT5 sensor platform) and the ServiceAdapter

(e.g., adapters for SOS and SPS) are used to connect sensors
and services to the Sensor Bus. Both interfaces are BusLis-

teners so that they can be notified by the BusMessageRe-

ceiver for retrieving messages sent over the bus. Senso-

rAdapter and ServiceAdapter transmit their messages to
the bus through the BusMessageSender. BusMessageRe-

ceiver and BusMessageSender hide from the underlying
communication infrastructure of the bus. The TwitterCon-

nector in Fig. 3 is an example implementation of the two
interfaces to realize the Sensor Bus based on Twitter6. Since
the two interfaces abstract from the communication infras-
tructure, it is easy to exchange the implementing class and
realize the Sensor Bus based on other messaging technolo-
gies (e.g., instant messaging systems). The implementation
of BusMessageReceiver calls in case of an incoming message
onMessage() to notify the listeners. The concrete sensor and
service adapters, acting as listeners, analyze the incoming
message and react on it according to their specifications.

The interactions between the geosensor network layer, the
Sensor Web and the intermediary layer are realized through
particular bus messages. A detailed analysis of interaction
patterns which emerge when introducing the intermediary
layer is conducted in [6]. The necessary bus messages are
listed in Table 1. The message format is compact to preserve
bandwidth and system resources. Single message fields are
divided by a separator sign.

The subscription of a service at the Sensor Bus is conducted
by a sequence of messages. First, the RegServ message is

5http://www.sunspotworld.com
6http://www.twitter.com

Figure 3: Sensor Bus core components as UML class
diagram

called to publish the URL of the service. Subsequently, Sub-
Serv messages are sent over the bus to subscribe the service
for certain sensors. In future, more advanced subscription
parameters are possible. For example, a service could sub-
scribe for sensors of a particular geographic region or for
sensors observing particular phenomena or features.

The subscription of a service for a particular sensor requires
the existence of unique identifiers for the sensor. Unified
Resource Identifiers (URIs) are therefore used here. The
discovery of sensors and the look-up of corresponding URIs
can be done through the Sensor Instance Registry (SIR)
[20]. As a SWE service, the SIR is also registered at the
Sensor Bus and is notified when new sensors appear. It
is automatically supplied with their metadata and fills its
search indexes so that clients can discover them.

The subscription of a service at the Sensor Bus by the means
of the RegServ and SubServ message is only necessary and
meaningful if the Sensor Bus or the underlying messaging
technology is capable of managing the associations between
service and sensor. The realization of the Sensor Bus using
Twitter 5 is light-weight and does not support such func-
tionality. Here, the service adapter ’knows’ in which sensors
it is interested and handles incoming messages accordingly.

To subscribe a sensor at the Sensor Bus and publish its ex-
istence the RegSen message is sent. It comprises the sensor
identifier as well as the URL of the sensor description, a Sen-
sorML document. The message is forwarded to the services
which are subscribed for the sensor.

For publishing new data the sensor adapter transmits the
PubData message via the Sensor Bus containing the time
when the data was observed as well as the data itself. Ser-
vice adapters receive this message and transform the data
into the service specific protocol. For example, the message
PubData*sunspotA1*2010-03-02T15:52:43*-2 is transform-

http://www.sunspotworld.com
http://www.twitter.com


Table 1: Sensor Bus messages.
Interaction Bus Message Protocol

Service Registration 1. RegServ*<service URL>

2. SubServ*<service URL>*<sensor A id>

3. SubServ*<service URL>*<sensor B id>

...

Sensor Registration SenReg*<sensor id>*<sensor description URL>

Data Publication PubData*<sensor id>*<time tag>*<data>

Sensor Tasking 1. PubTask*<sensor id>*<task id>

2. TaskParam*<task id>*<param 1>*<value 1>

3. TaskParam*<task id>*<param 2>*<value 2>

...

X. DoTask*<task id>

ed by a Sensor Observation Service (SOS) adapter to an
InsertObservation request as shown in Listing 1. Informa-
tion which is not contained in the message itself but neces-
sary within the InsertObservation request (e.g., the unit of
measure and the URL of the observed feature) is taken from
the sensor description.

The data are then collected and stored by the SOS and
henceforth available to clients via the standardized SOS in-
terface. It can be accessed and retrieved in a pull-based
manner. To provide the data in a push-based way, a Sensor
Alert Service can be registered at the Sensor Bus. The SAS
receives the incoming data, filters it by certain predefined
criteria and directly forwards it to interested clients.

<In se r tObse rvat i on s e r v i c e =’SOS’ ve r s i on = ’1.0.0 ’>
. . .
<om: Observation>

. . .
<gml : t imePos i t ion>

2010−03−02T15 : 5 2 : 4 3
</gml : t imePos i t ion>
. . .
<om: procedure

x l i nk : h r e f=”http :// s e r v e r / s en so r s#sunspotA1”/>
<om: observedProperty

x l i nk : h r e f=”urn : ogc : phenomenon : temperature”/>
<om: f e a t u r eO f I n t e r e s t

x l i nk : h r e f=”http :// s e r v e r / f e a t u r e s#myHouse”/>
<om: r e s u l t

x s i : type=”gml : MeasureType ”
uom=”urn : ogc :uom: deg”>
−2

</om: r e su l t>
</om: Observation>

</Inser tObservat ion>

Listing 1: Example of an SOS InsertObservation re-
quest.

The tasking of a sensor is triggered by a client request to a
Sensor Planning Service (SPS). A client sends a Submit op-
eration request to the SPS to submit a sensor task. An
example for such a request is shown in Listing 2. The
camera ’myCam123’ is tasked to change its focal length
to ’22.0’ millimeters and to change its looking direction to
’North’. The allowed values for the task parameterization
can be requested by the client through an afore invoked
DescribeTasking operation request. The service adapter of
the SPS transforms the Submit request to a sequence of
sensor tasking messages. It starts with a PubTask mes-

sage to publish an identifier for the task and the identifier
of the sensor (e.g., ’myCam123’) which shall execute the
task. In subsequent TaskParam messages the parameters
of the task are transmitted. For example the second pa-
rameter of the Submit request of Listing 2 is transformed
to TaskParam*myCam123_task1*LookingDirection*North.
Finally, the task is invoked by sending the DoTask message.

<Submit s e r v i c e =’SPS ’ ve r s i on = ’2.0.0 ’>
<s e n s o r I d e n t i f i e r >myCam123</s e n s o r I d e n t i f i e r >
<taskingParameters>

<ParameterData>
<encoding>

<TextEncoding tokenSeparator=”,”/>
</encoding>
<values >22.0 ,North</values>

</ParameterData>
</taskingParameters>
. . .

</Submit>

Listing 2: Example of an SPS Submit request.

The sensor adapter of ’myCam123’ registered at the Sensor
Bus receives the tasking message sequence and translates it
to the concrete sensor protocol (e.g., through specific sensor
drivers). Subsequently, it is forwarded to the sensor gateway
and eventually to the sensor.

5. IMPLEMENTATION OF THE SENSOR BUS
USING TWITTER

In general, the outlined architecture of the Sensor Bus, as
the intermediary layer, is adaptable to different underlying
messaging technologies. We implemented the Sensor Bus in
four different ways. These implementations are using Inter-
net Relay Chat (IRC), Extensible Messaging and Presence
Protocol (XMPP), Java Message Service (JMS), or Twit-
ter as the underlying messaging technology to establish the
publish/subscribe mechanism of the Sensor Bus. In this ar-
ticle we present the implementation of the Sensor Bus using
Twitter. An extensive evaluation and comparison of all ap-
plied technologies is current work in progress.

To plug a sensor into the Sensor Bus a sensor administrator
implements an adapter (Section 4) for the particular type
of her/his sensor. This adapter has only to be implemented
for each type of sensor once. In this work, we created an
adapter for the SunSPOT sensors.



In case of Twitter the services and sensors are available as
Twitter profiles. For the realization of the Sensor Bus, the
sensor administrator must create a Twitter profile for the
sensor since an automatic creation is not possible. The de-
scription URL of the sensor’s Twitter profile points to its
metadata description stored at a web-accessible location so
that it can be accessed by services at anytime. The sensor
description is a SensorML encoded document containing for
example detailed information about the sensor’s geographic
location. The sensor adapter is usually deployed on the com-
puting unit of the sensor gateway. Here, a SunSPOT, which
may act as a network sink to multiple SunSPOTs, is con-
nected via USB to a computer with network connection.
This computer represents the sensor gateway and hosts the
sensor adapter. This adapter is accompanied by a config-
uration file containing information about the endpoint of
the bus communication infrastructure (e.g., address, port,
or in this case the Twitter account identifier). Finally, when
the sensor adapter is started, it posts a RegSen message to
the mirco blog of the sensor’s Twitter profile. Subsequently,
the sensor forwards its measured data to the sensor gateway
which uses the sensor adapter to send the data to the Sensor
Bus. The specific implementation of the BusMessageSender

(Section 4) posts these data contained in a DataPub message
as a tweet to the micro blog of the sensor.

To attach a service to the Sensor Bus the provider has to
implement an adapter7 for the service. In this work, we
created an exemplary adapter for the Sensor Observation
Service. Additionally, the service provider has to create a
Twitter account for the service.

The runtime instance of the service adapter and the actual
Web Service are usually but not necessarily running on the
same machine. After starting the service adapter, it reg-
isters the service at the bus. The service adapter is ac-
companied by a configuration file defining the sensors (i.e.,
the Twitter account IDs of those sensors) for which it shall
be subscribed. To establish the publish/subscribe mecha-
nism in case of Twitter, the Twitter account of the service
is registered as a follower at the sensor’s account and vice
versa. Since the Twitter architecture is pull-based, the ser-
vice adapters and sensor adapters have to regularly check
the micro blogs (available as feeds) of the accounts which
they are following. So, if a sensor adapter posts a new Dat-
aPub message to its micro blog the service adapters, which
are following, get aware of that by checking the senor’s feed,
transform the message to the service specific protocol and
forward it.

6. ANALYSIS OF TWITTER IMPLEMEN-
TATION

Building the Sensor Bus on Twitter enables reusing func-
tionality offered by the messaging platform. For example,
security mechanisms can be easily incorporated in the imple-
mented approach, since authentication functionality is pro-
vided by Twitter. Also, scalability and reliability of the
Sensor Bus is managed by Twitter.

7The mid-term aim is to establish a library of adapters for
certain types of sensors as well as services. This will al-
low service providers and sensor vendors to reuse existing
adapter implementations to plug their components into the
bus.

However, there are some disadvantages in using Twitter as
the communication infrastructure of the Sensor Bus. In gen-
eral, the pull-based design of Twitter does not allow a true
push-based Sensor Bus. Instead, the message retrieval has
to be realized by regularly submitted API queries. Another
disadvantage is the limited update rate of Twitter’s search
index which means that for example a data publication mes-
sage posted by a sensor adapter is not instantly accessible
by a service adapter.

Further on, there are functional limitations related to a
Twitter profile. Besides the restriction of the length of a
single message (i.e., a so-called ’tweet’) to 140 characters, a
Twitter account (a) cannot submit more than 150 requests
per hour and (b) cannot send more than 1.000 tweets a day.
Restriction (a) results in a limited update rate for the ser-
vices listening to the Sensor Bus. By using the method sta-
tuses/friends timeline of the Twitter API a service adapter
can maximally query 150 times an hour the recently posted
tweets of all sensors it is following8.

A more significant disadvantage is restriction (b). In the
current design of the Sensor Bus implementation, a sensor
posts one data value per tweet. Due to (b), this results in
a maximum sampling rate of around 40 measurements per
hour. In many sensor network applications, this would be
unacceptable.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we outline the need for mechanisms to close
the gap between geosensor networks and the Sensor Web.
We propose to achieve this integration by introducing an in-
termediary layer realized as a message bus - the Sensor Bus.
The Sensor Bus incorporates a publish/subscribe mechanism
and defines certain messages to realize the interaction with
the Sensor Web layer and geosensor network layer.

An implementation of the Sensor Bus is published as open
source to the 52◦North Sensor Web community9. We have
implemented the adaptable Sensor Bus concept in different
ways based on instant messaging technologies or message
oriented middleware. An in-depth evaluation of the different
approaches including extended scalability and performance
tests is planned future work.

In this work, we present an implementation of the Sensor
Bus based on Twitter. Building the Sensor Bus on existing
messaging infrastructures is beneficial to reuse functionality
such as authentication, as well as scalability and reliability
management. However, the limited functionality of Twitter
(e.g., the maximum of 140 characters per tweet or the rate
limiting for API queries) does not leverage the full function-
ality of SWE services. Use cases of a certain complexity
cannot be handled by such a solution (e.g., satellite mission
planning).

We aim at contributing the concept of the Sensor Bus to
OGC’s SWE initiative. The Sensor Bus enables an auto-
matic notification of SWE services about changes in sen-

8To solve this issue Twitter offers the possibility for applying
to whitelist certain accounts or IP addresses. A whitelisted
entity can submit 20.000 requests per hour.
9http://www.52north.org/swe

http://www.52north.org/swe


sor metadata as well as newly gathered sensor data. So
far, new data or changed metadata has to be communicated
separately to the different SWE services which may lead to
inconsistencies within the Sensor Web quickly. Further de-
velopments will base the Sensor Bus on OGC’s Sensor Event
Service [13] which realizes a publish/subscribe architecture
based on Web Service Notification. This will result in an
intelligent Sensor Bus allowing complex event processing on
sensor data streams.

A next step will be the development of a mechanism for
plug & play of geosensors based on the Sensor Bus architec-
ture. Currently, we develop a SensorML application schema
defining a generic sensor interface description to automati-
cally generate the communication logic for adapting sensors
to the Sensor Bus. Based on these developments, semantic
challenges in the context of sensor plug & play [7] will be
identified and tackled. Finally, the approach has to be ap-
plied in real-world scenarios to demonstrate its benefits in
sensor asset management. As the project develops, we an-
ticipate that both our design and our research agenda will
evolve as new issues and opportunities arise.

Acknowledgment
This work is financially supported by the project ”Flexible
and Efficient Integration of Sensors and Sensor Web Ser-
vices” funded by the European Regional Development Fund
(ERDF) for NRW (contract number N 114/2008) of the Eu-
ropean Union, as well as the 52◦North Sensor Web commu-
nity which envisions a real time integration of heterogeneous
sensors into a coherent information infrastructure.

8. REFERENCES
[1] A. Aasa, O. Järv, and R. Ahas. Developing a model to

determine the impacts of climate change on the
geographical distribution of tourists. In K. Lammert
and L. Arend, editors, Sensing a Changing World
2008, pages 55 – 58. Wageningen University, 2008.

[2] K. Aberer, M. Hauswirth, and A. Salehi. A
middleware for fast and flexible sensor network
deployment. In Proceedings of the 32nd international
conference on Very large data bases, 2006.

[3] K. Aberer, M. Hauswirth, and A. Salehi. Middleware
support for the Internet of Things. 5. GI/ITG KuVS
Fachgespraech - Drahtlose Sensornetze, pages 15 – 19,
2006.

[4] M. Botts. OGC Implementation Specification 07-000:
OpenGIS Sensor Model Language (SensorML).
Technical report, Open Geospatial Consortium, 2007.

[5] M. Botts, G. Percivall, C. Reed, and J. Davidson.
OGC (R) Sensor Web Enablement: Overview and
High Level Architecture. Lecture Notes In Computer
Science, 4540:175–190, 2008.

[6] A. Broering, T. Foerster, and S. Jirka. Interaction
Patterns for Bridging the Gap between Sensor
Networks and the Sensor Web. In WoT 2010: First
International Workshop on the Web of Things,
Mannheim, Germany, March 29. - April 2. 2010;
forthcoming.

[7] A. Broering, K. Janowicz, C. Stasch, and W. Kuhn.
Semantic Challenges for Sensor Plug and Play. In
J. Carswell, S. Fotheringham, and G. McArdle,

editors, Web & Wireless Geographical Information
Systems (W2GIS 2009), 7 & 8 December 2009,
Maynooth, Ireland, number 5886 in LNCS, pages
72–86. Springer, 2009.

[8] A. Broering, E. H. Jürrens, S. Jirka, and C. Stasch.
Development of Sensor Web Applications with Open
Source Software. In First Open Source GIS UK
Conference (OSGIS 2009), 22 June 2009, Nottingham,
UK, 2009.

[9] K. Chang, N. Yau, M. Hansen, and D. Estrin.
sensorbase.org - A Centralized Repository to SLOG
Sensor Network Data. In International Conference on
Distributed Computing in Sensor Networks (DCOSS)
/ EAWMS Workshop, San Francisco, USA, June 2006.

[10] L.-K. Chung, B. Baranski, Y.-M. Fang, Y.-H. Chang,
T.-Y. Chou, and B. J. Lee. A SOA based debris flow
monitoring system - Architecture and proof-of-concept
implementation. In The 17th International Conference
on Geoinformatics 2009, Fairfax, USA, 2009.

[11] S. Cox. OGC Implementation Specification 07-022r1:
Observations and Measurements - Part 1 -
Observation schema. Technical report, Open
Geospatial Consortium, 2007.

[12] L. de Souza, P. Spiess, D. Guinard, M. Kohler,
S. Karnouskos, and D. Savio. Socrades: A web service
based shop floor integration infrastructure. Lecture
Notes in Computer Science, 4952:50, 2008.

[13] J. Echterhoff and T. Everding. OGC Discussion Paper
08-133: OpenGIS Sensor Event Service Interface
Specification. Technical report, Open Geospatial
Consortium, 2008.

[14] T. Foerster, A. Broering, S. Jirka, and J. Müller.
Sensor Web and Geoprocessing Services for Pervasive
Advertising. In J. Müller, P. Holleis, A. Schmidt, and
M. May, editors, Proceedings of the 2nd workshop on
pervasive advertising - in conjuction with Informatik
2009, pages 88 – 99, Lübeck, October 2009.

[15] S. Fruijtier, E. Dias, and H. Scholten. Geo
Mindstorms: Investigating a sensor information
framework for disaster management processes. In
L. Kooistra and A. Ligtenberg, editors, Sensing a
Changing World 2008, pages 50 – 54. Wageningen
University, 2008.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Resusable
Object-Oriented Software. Addison-Wesley
Professional, 1995.

[17] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan.
Irisnet: An architecture for a worldwide sensor web.
IEEE Pervasive Computing, pages 22–33, 2003.

[18] G. Hohpe and B. Woolf. Enterprise integration
patterns: Designing, building, and deploying messaging
solutions. Addison-Wesley Longman Publishing,
Boston, MA, USA, 2003.

[19] S. Jirka, A. Broering, and C. Stasch. Applying OGC
Sensor Web Enablement to Risk Monitoring and
Disaster Management. In GSDI 11 World Conference,
Rotterdam, Netherlands, June 2009.

[20] S. Jirka, A. Broering, and C. Stasch. Discovery
Mechanisms for the Sensor Web. Sensors, 9, 2009.

[21] K. Lee. IEEE 1451: A Standard in Support of Smart
Transducer Networking. Instrumentation and



Measurement Technology Conference, 2000. IMTC
2000. Proceedings of the 17th IEEE Volume 2, 2:525 –
528, 2000.

[22] S. Liang, V. Toa, and A. Croitoru. Sensor Web and
GeoSWIFT - An Open Geospatial Sensing Service. In
International Society for Photogrammetry and Remote
Sensing XXth Congress–Geo-Imagery Bridging
Continents, pages 12–23, 2004.

[23] D. Moodley and I. Simonis. A New Architecture for
the Sensor Web: The SWAP Framework. In 5th
International Semantic Web Conference ISWC 2006,
Athens, Georgia, USA, 2006.

[24] A. Na and M. Priest. OGC Implementation
Specification 06-009r6: OpenGIS Sensor Observation
Service (SOS). Technical report, Open Geospatial
Consortium, 2007.

[25] S. Nittel. A Survey of Geosensor Networks: Advances
in Dynamic Environmental Monitoring. Sensors,
9:5664 – 5678, 2009.

[26] A. Santanche, S. Nath, J. Liu, B. Priyantha, and
F. Zhao. Senseweb: Browsing the Physical World in
Real Time. In International Conference on
Information Processing in Sensor Networks (IPSN),
Nashville, USA, 2006.

[27] G. Schimak and D. Havlik. Sensors Anywhere - Sensor
Web Enablement in Risk Management Applications.
ERCIM News, The Sensor Web - Bringing Information
to Life(76):40–41, 2009.

[28] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and
J. Rabaey. A Service-Based Universal Application
Interface for Ad Hoc Wireless Sensor and Actuator
Networks. In W. Weber, J. Rabaey, and E. Aarts,
editors, Ambient intelligence. Springer Verlag, 2005.

[29] D. Shepherd and S. Kumar. Distributed Sensor
Networks, chapter Microsensor Applications.
Chapman & Hall, 2005.

[30] J. Shneidman, P. Pietzuch, J. Ledlie,
M. Roussopoulos, M. Seltzer, and M. Welsh.
Hourglass: An Infrastructure for Connecting Sensor
Networks and Applications. Technical report, Harvard
University, EECS, 2004.

[31] I. Simonis. OGC Best Practices 06-028r3: OGC Sensor
Alert Service Candidate Implementation Specification.
Technical report, Open Geospatial Consortium, 2006.

[32] I. Simonis. OGC Implementation Specification
07-014r3: OpenGIS Sensor Planning Service.
Technical report, Open Geospatial Consortium, 2007.

[33] C. Stasch, K. Janowicz, A. Broering, I. Reis, and
W. Kuhn. A Stimulus-Centric Algebraic Approach to
Sensors and Observations. In 3rd International
Conference on Geosensor Networks, Lecture Notes in
Computer Science. Springer, 2009.

[34] C. Stasch, A. C. Walkowski, and S. Jirka. A Geosensor
Network Architecture for Disaster Management based
on Open Standards. In M. Ehlers, K. Behncke, F. W.
Gerstengabe, F. Hillen, L. Koppers, L. Stroink, and
J. Wächter, editors, Digital Earth Summit on
Geoinformatics 2008: Tools for Climate Change
Research., pages 54–59, 2008.


	1 Introduction
	2 Sensor Web Enablement
	3 Related Work
	4 The Sensor Bus Architecture
	5 Implementation of the Sensor Bus Using Twitter
	6 Analysis of Twitter Implementation
	7 Conclusions and Future Work
	8 References

